Autoregressive Conditional Heteroskedasticity (Time Series Analysis)

KS123CG6VV9JQB3BDQQC

In econometrics, the autoregressive conditional heteroscedasticity (ARCH) model is a statistical model for time series data that describes the variance of the current error term or innovation as a function of the actual sizes of the previous time periods' error terms; often the variance is related to the squares of the previous innovations. The ARCH model is appropriate when the error variance in a time series follows an autoregressive (AR) model; if an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.

Read more on Wikipedia

Have feedback on this skill? Let us know.

pattern

Job Postings Data

Top Companies Posting

Job Postings Analytics Loading Spinner

Top Job Titles

Job Postings Analytics Loading Spinner

Job Postings Trend

Job Postings Analytics Loading Spinner

Live Job Postings

Job Postings Analytics Loading Spinner