Text Mining

KS441BW6SPKJGQ31RGW7

Text mining, also referred to as text data mining, similar to text analytics, is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." Written resources may include websites, books, emails, reviews, and articles. High-quality information is typically obtained by devising patterns and trends by means such as statistical pattern learning. According to Hotho et al. (2005) we can differ three different perspectives of text mining: information extraction, data mining, and a KDD process. Text mining usually involves the process of structuring the input text, deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interest. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling.

Read more on Wikipedia

Have feedback on this skill? Let us know.

pattern

Job Postings Data

Top Companies Posting

Job Postings Analytics Loading Spinner

Top Job Titles

Job Postings Analytics Loading Spinner

Job Postings Trend

Job Postings Analytics Loading Spinner

Live Job Postings

Job Postings Analytics Loading Spinner